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Abstract

In the present paper, we describe the conformal immersion of the surface into R4 by means of a linear system. Furthermore we
prove that every regular conformal immersion of a surface into R4 is locally determined by the generalized Weierstrass formulae.
We also give the representation of the surface with parallel mean curvature vector by solutions with the parameter of a linear system
which is determined by the sinh–Laplace equation.
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0. Introduction

Surface theory has been intensively studied in mathematics and physics. The application of the theory to solitary
wave phenomena in physics yields so-called “soliton geometry”. An important branch is the Weierstrass representation
of the surface in constant curvature space. The representation makes us study surfaces and their properties by means of
analysis methods. A classical example of such an approach is given by the Weierstrass representation for the minimal
surface in R3.

In R3 and H3(−1), there are abundant results with respect to the Weierstrass representations of the surfaces with
constant mean curvature (e.g. Refs [2,4,5,10]).

Generalized Weierstrass formulae for the surfaces in R3 and R4 were given by Konopelchenko in [6,8], and received
much attention (see e.g. [1,7,9]).

F. Pedit and U. Pinkall gave a coordinate-free version of the generalized Weierstrass representations for the
conformal immersions of the surfaces into R3 and R4 using the theory of quaternionic line bundles in [1]. These
representations are more intrinsic.
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In the present paper, we study the conformal immersion of the surface into R4. We give a coordinate version of the
generalized Weierstrass representation for the surface in R4 similar to the classical expression.

The surface with parallel mean curvature vector in R4 has been one of the interesting subjects. There are abundant
results for the surface (e.g. [11]). We study the surface by using an integrable system and find that the surface is
determined by the sinh–Laplace equation.

1. 2 by 2 matrix description

Let us denote the algebra of the quaternion by H, the multiplicative quaternion group by H∗ = H\ {0}. We identify
a four-dimensional Euclidean space with the quaternion H as follows:

X = (X1, X2, X3, X4)←→

(
X1
− i X4

−(X3
+ i X2)

X3
− i X2 X1

+ i X4

)
. (1.1)

And also, we still denote
(

X1
− i X4

−(X3
+ i X2)

X3
− i X2 X1

+ i X4

)
by X .

Define the scalar product of H as

〈X, X〉 = det X, X ∈ H. (1.2)

or

〈X, Y 〉 =
1
2
(det(X + Y )− det X − det Y ), X, Y ∈ H. (1.3)

According to this scalar product, the quaternion H turns out to be a Euclidean space.
Let f : D ⊆ C → R4 be a conformal immersed surface, and eωdzdz̄ be the first fundamental form of the surface.

Then 〈 fz, f z̄〉 =
1
2 eω.

We denote the immersion by

f =

(
f 1
− i f 4

−( f 3
+ i f 2)

f 3
− i f 2 f 1

+ i f 4

)
, (1.4)

where f j ( j = 1, 2, 3, 4) are functions with real values.

Proposition 1.1. Let f : D ⊆ C → R4 be a conformal immersed surface. Then there exist φ1, φ2 ∈ H∗ s.t.

fz = iφ∗2

(
0 1
0 0

)
φ1, f z̄ = iφ∗2

(
0 0
1 0

)
φ1. (1.5)

Two normal vectors of the surface can be given respectively as

n1 = ie−
w
2 φ∗2

(
1 0
0 −1

)
φ1, n2 = ie−

w
2 φ∗2

(
i 0
0 i

)
φ1, (1.6)

where z is a conformal coordinate and φ j =

(
ψ j −ϕ̄ j
ϕ j ψ̄ j

)
( j = 1, 2).

Proof. Let u be a conformal coordinate of the surface. Then

det fu = det

(
f 1
u − i f 4

u −( f 3
u + i f 2

u )

f 3
u − i f 2

u f 1
u + i f 4

u

)
= ( f 1

u )
2
+ ( f 2

u )
2
+ ( f 3

u )
2
+ ( f 4

u )
2
= 0.

This shows that the rank of the matrix fu must be one. We have the matrix decomposition as follows

fu =

(
f 1
u − i f 4

u −( f 3
u + i f 2

u )

f 3
u − i f 2

u f 1
u + i f 4

u

)
=

(
b1
b2

) (
c1 c2

)
=

(
−b1 b̄2

−b2 −b̄1

)(
0 1
0 0

)(
−c̄2 c̄1
−c1 −c2

)
. (1.7)
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Then

f 1
u − i f 4

u = b1c1, −( f 3
u + i f 2

u ) = b1c2,

f 3
u − i f 2

u = b2c1, f 1
u + i f 4

u = b2c2.

Taking the conjugation, we get

f 1
ū − i f 4

ū = b̄2c̄2, −( f 3
ū + i f 2

ū ) = −b̄2c̄1,

f 3
ū − i f 2

ū = −b̄1c̄2, f 1
ū + i f 4

ū = b̄1c̄1.

Hence

fū =

(
f 1
ū − i f 4

ū −( f 3
ū + i f 2

ū )

f 3
ū − i f 2

ū f 1
ū + i f 4

ū

)
=

(
b̄2

−b̄1

) (
c̄2 −c̄1

)
= −

(
−b1 b̄2

−b2 −b̄1

)(
0 0
1 0

)(
−c̄2 c̄1
−c1 −c2

)
.

Define z = −iu, φ1 =

(
−c̄2 c̄1
−c1 −c2

)
, φ2 =

(
−b̄1 −b̄2
b2 −b1

)
. Then

fz = i fu = iφ∗2

(
0 1
0 0

)
φ1, f z̄ = −i fū = iφ∗2

(
0 0
1 0

)
φ1.

Straightforwardly we check that n1, n2 given by (1.6) are the unit normal frame fields of the surface. �

Define Q j = 〈 fzz, n j 〉 and H j = 2e−ω〈 fzz̄, n j 〉. We call Q j the Hopf differential and 1
2 H1e1 +

1
2 H2e2 the mean

curvature vector of the surface, where e1 = e−
ω
2 fx , e2 = e−

ω
2 fy .

From these definitions, we can directly verify the following proposition.

Proposition 1.2. Define c = 〈n1z, n2〉 = −〈n1, n2z〉. Then

fzz = ωz fz + Q1n1 + Q2n2 = iφ∗2

(
(Q1 + i Q2)e

−
ω
2 ωz

0 −(Q1 − i Q2)e
−
ω
2

)
φ1,

fzz̄ =
1
2

H1eωn1 +
1
2

H2eωn2 = iφ∗2

1
2
(H1 + i H2)e

ω
2 0

0 −
1
2
(H1 − i H2)e

ω
2

φ1,

f z̄ z̄ = ωz̄ f z̄ + Q̄1n1 + Q̄2n2 = iφ∗2

(
(Q̄1 + i Q̄2)e

−
ω
2 0

ωz̄ −(Q̄1 − i Q̄2)e
−
ω
2

)
φ1,

n1z = −H1 fz − 2Q1e−ω f z̄ + cn2 = ie−
ω
2 φ∗2

(
ci −H1e

ω
2

−2Q1e−
ω
2 ci

)
φ1,

n1z̄ = −2Q̄1e−ω fz − H1 f z̄ + c̄n2 = ie−
ω
2 φ∗2

(
c̄i −2Q̄1e−

ω
2

−H1e
ω
2 c̄i

)
φ1,

n2z = −H2 fz − 2Q2e−ω f z̄ − cn1 = ie−
ω
2 φ∗2

(
−c −H2e

ω
2

−2Q2e−
ω
2 c

)
φ1,

n2z̄ = −2Q̄2e−ω fz − H2 f z̄ − c̄n1 = ie−
ω
2 φ∗2

(
−c̄ −2Q̄2e−

ω
2

−H2e
ω
2 c̄

)
φ1.

Define

φ∗−1
2 φ∗2z̄ = U∗2 , φ∗−1

2 φ∗2z = V ∗2 , φ1zφ
−1
1 = U1, φ1z̄φ

−1
1 = V1. (1.8)
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Next we shall express U1,U2, V1, V2 in terms of ω, Q1, Q2, H1 and H2. From the integrable condition of (1.5),
we have

U∗2

(
0 1
0 0

)
+

(
0 1
0 0

)
V1 = V ∗2

(
0 0
1 0

)
+

(
0 0
1 0

)
U1. (1.9)

Define eω1 I := (|ψ1|
2
+ |ϕ1|

2)I = φ1φ
∗

1 , eω2 I := (|ψ2|
2
+ |ϕ2|

2)I = φ2φ
∗

2 . Then

ω = ω1 + ω2, U1 + V ∗1 = ω1z, U2 + V ∗2 = ω2z . (1.10)

From (1.5), we get

fzz = iφ∗2

(
V ∗2

(
0 1
0 0

)
+

(
0 1
0 0

)
U1

)
φ1,

fzz̄ = iφ∗2

(
U∗2

(
0 1
0 0

)
+

(
0 1
0 0

)
V1

)
φ1,

f z̄ z̄ = iφ∗2

(
U∗2

(
0 0
1 0

)
+

(
0 0
1 0

)
V1

)
φ1.

(1.11)

And

n1z = ie−
ω
2 φ∗2

(
−

1
2
ωz

(
1 0
0 −1

)
+ V ∗2

(
1 0
0 −1

)
+

(
1 0
0 −1

)
U1

)
φ1. (1.12)

Combining Proposition 1.2 with (1.10) and (1.11), we obtain

V ∗2

(
0 1
0 0

)
+

(
0 1
0 0

)
U1 =

(
(Q1 + i Q2)e

−
ω
2 ωz

0 −(Q1 − i Q2)e
−
ω
2

)
,

V ∗2

(
0 0
1 0

)
+

(
0 0
1 0

)
U1 =

1
2
(H1 + i H2)e

ω
2 0

0 −
1
2
(H1 − i H2)e

ω
2

 . (1.13)

Let U1 = (ui j ), V2 = (vi j ). From (1.13), we know
U1 =

 u11 −
1
2
(H1 − i H2)e

ω
2

(Q1 + i Q2)e
−
ω
2 ωz − v̄11

 ,
V2 =

(
v11 −(Q̄1 + i Q̄2)e

−
ω
2

(H1 − i H2)e
ω
2 −ū11

)
.

(1.14)

Since U2 = ω2z I − V ∗2 and V ∗1 = ω1z I −U1, we have
U2 =

 ω2z − v̄11 −
1
2
(H1 + i H2)e

ω
2

(Q1 − i Q2)e
−
ω
2 ω2z + u11

 ,
V1 =

 ω1z̄ − ū11 −(Q̄1 − i Q̄2)e
−
ω
2

1
2
(H1 + i H2)e

ω
2 −ω2z̄ + v11

 .
(1.15)

From φ1z = U1φ1 and φ1z̄ = V1φ1, we find
ψ1z = u11ψ1 −

1
2
(H1 − i H2)e

ω
2 ϕ1,

ψ̄1z̄ = −
1
2
(H1 + i H2)e

ω
2 ϕ̄1 + (−ω2z̄ + v11)ψ̄1,
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and {
ϕ1z = (Q1 + i Q2)e

−
ω
2 ψ1 + (ωz − v̄11)ϕ1,

ϕ̄1z̄ = (ω1z̄ − ū11)ϕ̄1 + (Q̄1 − i Q̄2)e
−
ω
2 ψ̄1.

So

u11 = −ω2z + v̄11. (1.16)

From (1.12) and Proposition 1.2, we get

−
1
2
ωz + v̄11 + u11 = ic. (1.17)

(1.16) and (1.17) yield
v̄11 =

1
2

ic +
1
4
ω1z +

3
4
ω2z,

u11 =
1
2

ic +
1
4
ω1z −

1
4
ω2z .

(1.18)

From (1.12), (1.14) and (1.15) we obtain the following two linear systems.

φ1z =

 i

2
c +

1
4
(ω1 − ω2)z −

1
2
(H1 − i H2)e

ω
2 ,

(Q1 + i Q2)e
−
ω
2

3
4
ω1z +

1
4
ω2z −

1
2

ic

φ1,

φ1z̄ =

 i

2
c̄ +

3
4
ω1z̄ +

1
4
ω2z̄ −(Q̄1 − i Q̄2)e

−
ω
2

1
2
(H1 + i H2)e

ω
2 −

1
2

i c̄ +
1
4
(ω1 − ω2)z̄

φ1,

(1.19)



φ2z =

− i

2
c −

1
4
(ω1 − ω2)z −

1
2
(H1 + i H2)e

ω
2 ,

(Q1 − i Q2)e
−
ω
2

1
4
ω1z +

3
4
ω2z +

1
2

ic

φ2,

φ2z̄ =

− i

2
c̄ +

1
4
ω1z̄ +

3
4
ω2z̄ −(Q̄1 + i Q̄2)e

−
ω
2 ,

1
2
(H1 − i H2)e

ω
2

1
2

i c̄ −
1
4
(ω1 − ω2)z̄

φ2.

(1.20)

Note that the equation θz = −
c
2 always is solvable. Let θ be a solution of this equation. By the gauge

transformations
φ̃1 = e−

1
4 (ω1−ω2)

(
eiθ 0

0 e−i θ̄

)
φ1,

φ̃2 = e
1
4 (ω1−ω2)

(
e−iθ 0

0 ei θ̄

)
φ2,

(1.21)

we can obtain the following

Theorem 1.3. Under the isomorphism (1.1), the moving frame fz, f z̄, n1, n2 of the conformally immersed surface in
R4 are

fz = iφ∗2

(
0 1
0 0

)
φ1, f z̄ = iφ∗2

(
0 0
1 0

)
φ1 (1.22)
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n1 = ie−

ω
2 φ∗2

(
e−i(θ+θ̄ ) 0

0 −ei(θ+θ̄ )

)
φ1,

n2 = ie−
ω
2 φ∗2

(
ie−i(θ+θ̄ ) 0

0 iei(θ+θ̄ )

)
φ1,

(1.23)

where φ1, φ2 ∈ H∗ satisfy

φ1z =

 0 −
1
2
(H1 − i H2)e

ω
2+i(θ+θ̄ )

(Q1 + i Q2)e
−
ω
2−i(θ+θ̄ ) 1

2
ωz − i θ̄z −

1
2

ic

φ1,

φ1z̄ =

 1
2
ωz̄ + iθz̄ +

1
2

i c̄ −(Q̄1 − i Q̄2)e
−
ω
2+i(θ+θ̄ )

1
2
(H1 + i H2)e

ω
2−i(θ+θ̄ ) 0

φ1,

(1.24)



φ2z =

 0 −
1
2
(H1 + i H2)e

ω
2−i(θ+θ̄ )

(Q1 − i Q2)e
−
ω
2+i(θ+θ̄ ) 1

2
ωz + i θ̄z +

1
2

ic

φ2,

φ2z̄ =

 1
2
ωz̄ − iθz̄ −

1
2

i c̄ −(Q̄1 + i Q̄2)e
−
ω
2−i(θ+θ̄ )

1
2
(H1 − i H2)e

ω
2+i(θ+θ̄ ) 0

φ2.

(1.25)

The compatible conditions are

Gauss equation ωzz̄ +
1
2
|H |2eω − 2(|Q1|

2
+ |Q2|

2)e−ω = 0. (1.26)

Ricci equation cz̄ − c̄z = 2(Q1 Q̄2 − Q̄1 Q2). (1.27)

Codazzi equation (1.28)

Q1z̄ − c̄Q2 =
1
2

eω(H1z − cH2), Q2z̄ + c̄Q1 =
1
2

eω(H2z + cH1),

Q̄1z − cQ̄2 =
1
2

eω(H1z̄ − c̄H2), Q̄2z + cQ̄1 =
1
2

eω(H2z̄ + c̄H1).

And c, θ satisfy

θz = −
1
2

c. (1.29)

Proof. Straightforwardly check by substituting the gauge transformation (1.21) into (1.5), (1.19) and (1.20) and
rewrite φ̃1, φ̃2 as φ1, φ2. �

Also from the gauge transformation, we get

fzz̄ =
i

2
e
ω
2 φ∗2

(
(H1 + i H2)e

−i(θ+θ̄ ) 0

0 −(H1 − i H2)e
i(θ+θ̄ )

)
φ1, (1.30)

For convenience, sometimes we define θ + θ̄ = u (a real function).

2. Weierstrass formulae

The generalized Weierstrass formulae of the surfaces in R3 with coordinates X1, X2, X3 are of following form
(e.g. Ref. [6])

X1
+ i X2

= i
∫
Γ
(ϕ̄2dz − ψ̄2dz̄), X1

− i X2
= i

∫
Γ
(ψ2dz − ϕ2dz̄),
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X3
=

∫
Γ
(ψ̄ϕdz + ϕ̄ψdz̄),

where Γ is a contour in C, and ϕ,ψ satisfy

ϕz = pψ, ψz̄ = −pϕ.

The formulae define a conformal immersed surface in R3. Vice versa, every regular conformal immersed surface
in R3 is locally defined by the above formulae [9].

The generalized Weierstrass formulae of the surfaces in R4 with coordinates X1, X2, X3, X4 were put forward for
the first time by Konopelchenko [8]. The formulae are of the following form.

X1
+ i X2

=

∫
Γ
(−ϕ1ϕ2dz + ψ1ψ2dz̄), X3

+ i X4
=

∫
Γ
(ϕ1ψ̄2dz + ϕ̄2ψ1dz̄),

X1
− i X2

=

∫
Γ
(ψ̄1ψ̄2dz − ϕ̄1ϕ̄2dz̄), X3

− i X4
=

∫
Γ
(ϕ2ψ̄1dz + ψ2ϕ̄1dz̄),

where

ψ1z = pϕ1, ψ2z = p̄ϕ2,

ϕ1z̄ = − p̄ψ1, ϕ2z̄ = −pψ2.

and ψα, ϕα (α = 1, 2), p are complex-valued functions of z, z̄,Γ is a contour in C.
However B.G. Konopelchenko did not show whether a conformal surface immersed into R4 is of this representation

locally.
Pedit and Pinkall study the conformal immersions of the surfaces into R3 and R4 using the quaternionic value

function theory in [1]. In the case of R4, they obtained the following coordinate-free version of the generalized
Weierstrass representation.

Theorem A (F. Pedit and U. Pinkall). Let f : M → H be a conformal immersion. Then there exist paired
holomorphic quaternionic line bundles L , L̃ and nowhere vanishing sections ψ ∈ H0(L), φ ∈ H0(L̃) such that

d f = (ψ, φ).

L , L̃, ψ and φ are uniquely determined by f up to isomorphism. And ψ and φ satisfy (∂̄ + Q)ψ = 0, (∂̄ + Q̃)φ = 0,
where Q, Q̃ are Hopf fields.

The classical Weierstrass representation is given by the coordinates. We hope to get the coordinate version of
the generalized Weierstrass representation in the case of R4. Using the conclusions of Section 1, we can obtain the
following Weierstrass representation of the surfaces immersed conformally into R4. Comparing with Theorem A, our
conclusion is given in coordinate form.

Theorem 2.4. Assume that f : D ⊆ C → R4 is a regular conformal immersion of surface M into R4 with conformal
coordinates z. Let eωdzdz̄ be the metric of M. Then f can be locally expressed by

f 4
+ i f 1

=

∫
Γ
(ϕ1ψ̄2dz + ϕ̄2ψ1dz̄), f 2

− i f 3
=

∫
Γ
(−ψ̄1ψ̄2dz + ϕ̄1ϕ̄2dz̄),

f 2
+ i f 3

=

∫
Γ
(ϕ1ϕ2dz − ψ1ψ2dz̄), f 4

− i f 1
= −

∫
Γ
(ϕ2ψ̄1dz + ψ2ϕ̄1dz̄),

(2.1)

where ψα, ϕα (α = 1, 2) satisfy
ψ1z = −

1
2
(H1 − i H2)e

ω
2+iuϕ1,

ϕ1z̄ =
1
2
(H1 + i H2)e

ω
2−iuψ1,


ψ2z = −

1
2
(H1 + i H2)e

ω
2−iuϕ2,

ϕ2z̄ =
1
2
(H1 − i H2)e

ω
2+iuψ2.

(2.2)
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Proof. Let

φ1 =

(
ψ1 −ϕ̄1

ϕ1 ψ̄1

)
, φ2 =

(
ψ2 −ϕ̄2

ϕ2 ψ̄2

)
.

(1.24) and (1.25) show that (2.2) holds.
From (1.22), we have

d f = fzdz + f z̄dz̄

= i

(
ϕ1ψ̄2dz + ϕ̄2ψ1dz̄ ψ̄1ψ̄2dz − ϕ̄1ϕ̄2dz̄
−ϕ1ϕ2dz + ψ1ψ2dz̄ −ϕ2ψ̄1dz − ϕ̄1ψ2dz̄

)
.

Combining with (1.4)

d f =

(
d( f 1

− i f 4) −d( f 3
+ i f 2)

d( f 3
− i f 2) d( f 1

+ i f 4)

)
,

we have (2.1). �

Two normal vectors n1 and n2 satisfy

n1 = ie−
ω
2 φ∗2

(
e−iu 0

0 −eiu

)
φ1

= ie−
ω
2

(
ψ1ψ̄2e−iu

− ϕ1ϕ̄2eiu
−ϕ̄1ψ̄2e−iu

− ψ̄1ϕ̄2eiu

−ψ1ϕ2e−iu
− ϕ1ψ2eiu ϕ̄1ϕ2e−iu

− ψ̄1ψ2eiu

)
,

n2 = ie−
ω
2 φ∗2

(
ie−iu 0

0 ieiu

)
φ1

= −e−
ω
2

(
ψ1ψ̄2e−iu

+ ϕ1ϕ̄2eiu
−ϕ̄1ψ̄2e−iu

+ ψ̄1ϕ̄2eiu

−ψ1ϕ2e−iu
+ ϕ1ψ2eiu ϕ̄1ϕ2e−iu

+ ψ̄1ψ2eiu

)
.

According to the (1.1), we can get the components of n1 and n2.

3. The surface with parallel mean curvature vector in R4

The surface with parallel mean curvature vector in Rn has been classed by Yau [11] as follows.

Theorem B. Let M2 be a surface with parallel mean curvature vector in a constant curved manifold N. Then either
M2 is a minimal surface of umbilical hypersurface of N or M2 lies in a three-dimensional umbilical submanifold of
N with constant mean curvature.

We shall study the surfaces with parallel mean curvature vector in R4 by using the method of the integrable system.
Define e1 = e−

ω
2 fx , e2 = e−

ω
2 fy, e3 = n1, e4 = n2 given as in Theorem 1.3. Then

fz =
1
2

e
ω
2 (e1 − ie2), fz =

1
2

e
ω
2 (e1 + ie2), (3.1)

or

e1 = e−
ω
2 ( fz + fz), e2 = ie−

ω
2 ( fz − fz). (3.2)

de3 = n1zdz + n1zdz̄
= (−H1dz − 2Q1e−ωdz) fz + (−2Q1e−ωdz − H1dz) fz + (cdz + cdz)e4.

On the other hand,

de3 = ω13e1 + ω23e2 + ω43e4

= −(ω31 + iω32)e
−
ω
2 fz − (ω31 − iω32)e

−
ω
2 fz − ω34e4.
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These show thatH1dz + 2Q1e−ωdz = (ω31 + iω32)e
−
ω
2 ,

2Q1e−ωdz + H1dz = (ω31 − iω32)e
−
ω
2 ,

cdz + cdz = −ω34.

(3.3)

Let ω31 =
∑

h3
1 jω j , ω32 =

∑
h3

2 jω j . From ω1 = e
ω
2 dx , ω2 = e

ω
2 dy and (3.3), we have

H1 =
1
2
(h3

11 + h3
22), Q1e−ω =

1
4
(h3

11 − h3
22)+

i

2
h3

12. (3.4)

In the same way, we get

H2 =
1
2
(h4

11 + h4
22), Q2e−ω =

1
4
(h4

11 − h4
22)+

i

2
h4

12, (3.5)

where ω41 =
∑

h4
1 jω j , ω42 =

∑
h4

2 jω j .

We denote the mean curvature vector of the surface by H. Then H = e−ω fzz =
1
2 H1e3 +

1
2 H2e4. Define the

covariant differentiation of e3, e4 in the normal bundle of M2 by

D⊥e3 = −ω34e4, D⊥e4 = ω34e3.

We have

D⊥H =
1
2

[(dH1 + H2ω34)e3 + (dH2 − H1ω34e4)] .

Hence, H is parallel in the normal bundle of the surface in R4 if and only if dH1+ H2ω34 = 0, dH2− H1ω34 = 0.
That is{

H1z − cH2 = 0,
H1z − cH2 = 0,

{
H2z + cH1 = 0,
H2z + cH1 = 0.

(3.6)

It is easy to establish |H| = const. on the surface.
In the following case, we assume |H| 6= 0.
Define

H1 = |H| cosϕ, H2 = |H| sinϕ, H = H1 + i H2 = |H |e
iϕ . (3.7)

We get

dH1 = −|H | sinϕdϕ, dH2 = |H | cosϕdϕ. (3.8)

Together with dH1 − H2ω34 = 0, dH2 + H1ω34 = 0, this gives

ω34 = −dϕ. (3.9)

Furthermore

ϕz = −c, ϕz = −c. (3.10)

From (1.28)

(Q1 + i Q2)z = −ic(Q1 + i Q2) = iϕz(Q1 + i Q2),

(Q1 − i Q2)z = ic(Q1 − i Q2) = −iϕz(Q1 − i Q2).

Hence

Q1 + i Q2 = ξ1(z)e
iϕ, Q1 − i Q2 = ξ2(z)e

−iϕ, (3.11)

where ξ1 and ξ2 are holomorphic functions.
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From (3.7) and (3.11), we get
Q1 + i Q2 = ξ1eiϕ

=
1
|H |

(H1 + i H2)ξ1,

Q1 − i Q2 = ξ2e−iϕ
=

1
|H |

(H1 − i H2)ξ2.

(3.12)

Notice that 2(Q1 Q2 − Q1 Q2) = cz − cz = ϕzz − ϕzz = 0 and |Q1 + i Q2|
2
= |Q1|

2
+ |Q2|

2
= |Q1 − i Q2|

2.
We have |ξ1(z)| = |ξ2(z)|. Let ξ2(z) = ξ1(z)e2i t , where t (z, z̄) is a real function. And since ξ1 and ξ2 are analytic, we
know that t must be a constant function.

Define ξ(z) = ξ2(z)e−i t
= ξ1(z)ei t . We get from (3.12)

Q1 + i Q2 =
H1 + i H2

|H |
e−i tξ(z),

Q1 − i Q2 =
H1 − i H2

|H |
ei tξ(z).

(3.13)

(Q1 + i Q2)dz2 and (Q1 − i Q2)dz2 are invariant under the coordinate transformation d̃z = 1
|H |ξ

1
2 dz. Hence we

choose coordinates z such that{
Q1 + i Q2 = (H1 + i H2)e

−i t

Q1 − i Q2 = (H1 − i H2)e
i t .

(3.14)

Because θ = 1
2ϕ is the solution of equation θz = −

1
2 c, we take θ = 1

2ϕ in (1.24) and (1.25). Then θ + θ = ϕ,
θz =

1
2ϕz = −

c
2 , θ z =

1
2ϕz = −

c
2 . And (1.24) and (1.25) become

φ1z =

 0 −
1
2
|H |e

ω
2

|H |e−
ω
2−i t 1

2
ωz

φ1,

φ1z̄ =

 1
2
ωz̄ −|H |e−

ω
2+i t

1
2
|H |e

ω
2 0

φ1,

(3.15)



φ2z =

 0 −
1
2
|H |e

ω
2

|H |e−
ω
2+i t 1

2
ωz

φ2,

φ2z̄ =

 1
2
ωz̄ −|H |e−

ω
2−i t

1
2
|H |e

ω
2 0

φ2.

(3.16)

The integrable condition of the system is ωzz+|H |2( 1
2 eω−2e−ω) = 0, which can be transformed into sinh–Laplace

equation uzz̄ = −2|H |2 sinh u by setting u = ω − ln 2. Given a solution ω of the equation, we can obtain a surface
with parallel mean curvature vector in R4 using the solutions of the system (3.15) and (3.16). Furthermore, if we
denote the solution of (3.15) by φt , that is, take φt = φ1, then φ2 = φ−t .

Now we can investigate the character of the surface using the former discussion.

Theorem 3.5. The surfaces with parallel mean curvature vector in R4 form a family of surfaces M t (t ∈ R). They can
be determined from the following systems

f t
z = iφ∗−t

(
0 1
0 0

)
φt , f t

z̄ = iφ∗−t

(
0 0
1 0

)
φt , (3.17)
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where φt satisfies

φt z =

 0 −
1
2
|H |e

ω
2

|H |e−
ω
2−i t 1

2
ωz

φt ,

φt z̄ =

 1
2
ωz̄ −|H |e−

ω
2+i t

1
2
|H |e

ω
2 0

φt .

(3.18)

In detail, we have

1. M0 (=Mkπ ) lies in R3 with constant mean curvature and the immersion f can be expressed by

f =
1
|H |

(
2φ−1

t
∂

∂t
φt − nt

)
t=0

,

where nt
= ie−

ω
2 φ∗t

(
1 0
0 −1

)
φt is the normal vector of the surface in R3 and φt is the solution of the system (3.18).

2. M t (t 6= kπ) lies in S3(r) with constant mean curvature and M t can be expressed by

|H | sin t ( f t
− f0) = e−

ω
2 φ∗−t

(
e−i t 0

0 ei t

)
φt ,

where r = 1
|H || sin t | and φt is the solution of the (3.18). In particular, M

π
2 is a minimal surface in S3( 1

|H | ).

Proof. For the surface with parallel mean curvature vector in R4, we consider (3.18).

1. When t = 2kπ , φ−t = φt := φ. (3.18) turns out to be

φz =

 0 −
1
2
|H |e

ω
2

|H |e−
ω
2

1
2
ωz

φ,
φz̄ =

 1
2
ωz̄ −|H |e−

ω
2

1
2
|H |e

ω
2 0

φ.
(3.19)

And

fz = iφ∗
(

0 1
0 0

)
φ, f z̄ = iφ∗

(
0 0
1 0

)
φ. (3.20)

Because of

∂

∂z

(
e−

ω
2 φ∗

(
1 0
0 1

)
φ

)
= 0,

we know the surface lies in R3. And n = ie−
ω
2 φ∗

(
1 0
0 −1

)
φ is the normal vector of the surface in R3. It can be

expressed by a Sym-Bobenko type of representation formula of the surface in R3 [3]. Taking the solutions φt of
(3.18), we get

f =
1
|H |

(
2φ−1

t
∂

∂t
φt − nt

)
t=0

.

2. Let t 6= 2kπ . Note that from (3.18)

∂

∂z

(
e−

ω
2 φ∗−t

(
e−i t 0

0 ei t

)
φt

)
= |H | sin t f t

z ,



378 J. Chen, W. Chen / Journal of Geometry and Physics 57 (2007) 367–378

and

∂

∂ z̄

(
e−

ω
2 φ∗−t

(
e−i t 0

0 ei t

)
φt

)
= |H | sin t f t

z̄ .

Therefore

|H | sin t ( f t
− f0) = e−

ω
2 φ∗−t

(
e−i t 0

0 ei t

)
φt .

This shows that M t lies in S3(r), r = 1
|H || sin t | , f0 is the center.

Next we determine the normal vector and mean curvature vector of surface M in S3(r).
Since f t

− f0 is a normal vector field of the surface, we know that

nt
= ie−

ω
2 φ∗−t

(
−e−i t 0

0 ei t

)
φt

is the normal vector field of the surface in S3(r).
From (1.30), we get

f t
zz̄ =

i

2
|H |e

ω
2 φ∗−t

(
1 0
0 −1

)
φt . (3.21)

The mean curvature H t
S3(r)

of the surface in S3(r) is

H t
S3(r) =

1
2

eω〈nt , f t
zz̄〉 = |H | cos t.

This shows that M
π
2 is a minimal surface in S3(r) if t = 2kπ + π

2 . �
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